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Abstract. The energy spectrum of the quantum elliptic billiard is obtained by solving the 
Schrodinger equation in elliptic coordinates. The corresponding eigenstates also 
diagonalise an operator B which commutes with H. A numerical search of the exact 
eigenvalues of B and H permits one to follow each state as a function of the deformation 
parameter p. Geometrical arguments, also valid for the simpler problem of the rectangular 
box, allow us to understand the results obtained. 

The analysis of energy spectra of different physical bound systems has always been 
an interesting subject in quantum mechanics. The energy-level spacings as well as the 
existence of degeneracies (crossings) in such systems have been widely studied during 
recent years. The number of degrees of freedom, the separability of the problem and 
the number of free parameters involved, among others, are very important features 
which have to be taken into account when a given quantum spectrum is analysed. 

Starting from Percival's ideas (Percival 1973) for systems with more than one degree 
of freedom, two kinds of spectra have been distinguished. The regular spectrum, whose 
level spacing is characterised by a Poisson distribution (Berry and Tabor 1977), is 
associated with integrable problems (the harmonic oscillator is an exception). The 
other one, the irregular spectrum characterised by a Gaussian distribution, corresponds 
to non-integrable systems (Pechukas 1983, Yukawa 1985). 

This statistical behaviour can be related to crossings and repulsions between levels 
with the same symmetry when the spectra are analysed as functions of the parameters 
of the problem. In fact, integrable systems depending on one parameter exhibit many 
crossings while non-integrable systems show repulsions and double-hyperbola curves, 
rather than degeneracies. 

In a recent paper, Arvieu and Ayant (1987) studied a physical example of such 
integrable systems. It is the problem of a spinless particle in a hard elliptic box 
(quantum elliptical billiard). The spectrum is presented as a function of the deformation 
parameter p = a / b  ( a  and b being the major and minor axes of the ellipse) while the 
area is preserved constant. It exhibits a lot of crossings but also a certain number of 
repulsions (see for instance figure 9 of Arvieu and Ayant) which drew the attention 
of the authors and which in fact do not really exist. The authors also stated in their 
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paper that the real existence of the crossings would have to be proved numerically 
and that an analysis similar to that done by Berry (Berry and Wilkinson 1984) is still 
lacking. 

The aim of this letter is to display the correct behaviour of the energy levels and 
to explain the spectrum using simple geometrical considerations. In fact it has been 
known for some time that levels of this kind of system will typically cross when /.L is 
varied, However, the diagonalisation procedure adopted by Arvieu and Ayant does 
not allow one to follow each level continuously and leads to incorrect identifications 
of the states. In the present work we will solve the Schrodinger equation in elliptic 
coordinates, developing an alternative method for computing the exact eigenvalues. 
Moreover, we will simultaneously diagonalise a new observable B which commutes 
with H, providing two eigenvalues which characterise each state. 

Let us first consider the Schrodinger equation in elliptic coordinates. It is easy to 
observe that it can be separated in two Mathieu equations (Stratton 1941) 

+ ( U 2 k 2 t 2  - b) f i  = O  

(1b) 

where k2=2mE/A2, u = a ( l  -p2)l” is the focal distance and b is the constant of 
separation. In order to have physical solutions it is necessary that fi( 7) be a periodic 
function of U (7 = cos U). The values of b satisfying this condition are the characteristic 
values of the Mathieu equation and constitute a denumerable set bo, b , ,  b,, . . . for 
the even solutions and bl , b 2 ,  b 3 , .  . . for the odd solutions. 

In order to understand the physical meaning of b we will turn on to the classical 
equations. The classical Hamiltonian in elliptic coordinates can be written 

where pt  = a Z / a &  and p,, = aZ/d . t i  are the classical momenta and 2 is the classical 
Lagrangian. For 6 < to (to determines the boundary of the ellipse), V (  6, 7) = 0. Thus, 
a second constant of motion can be found such that 

- (t2- l ) p : + 2 m a ’ ~ { ~  - B = o 
- ( 1  - v 2 ) p 2  - 2ma2Ev2 + B = 0.  

( 3 a )  

( 3 6 )  
It is easy to relate the constant B to the product of the angular momenta with respect 
to the focii at x = *U 

(4) 
( 6 2 - ~ 2 ) [ ( t 2 - 1 ) r j 2 - ( ~  -6’)i‘]m2u4 

( t 2 - 1 ) ( 1 - 7 2 )  
lI * 1, = 

so that 

B = lI - 1,+2ma2E. ( 5 )  
If 1, - 1, > 0, B > 2ma’E and the classical trajectory repeatedly touches an ellipse 
characterised by bim = B/2ma2E.  On the other hand, if lI - l2 < 0, the trajectory always 
lies between the focii touching a hyperbola determined by qim = B / 2 m a 2 E  (see also 
Berry 1981). In this last case, from ( 3 b )  B is a positive number; thus we obtain a 
lower limit for I ,  - 1, given by -2ma2E. 
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Turning to the quantum mechanical problem, the physically allowed values of the 
separation constant b, i.e. the characteristic values of the Mathieu equation, are the 
eigenvalues (in units of h 2 )  of a new observable B which commutes with fi 

B = i, e i 2 + 2 m u 2 H .  (6) 
The integer which enumerate these characteristic values indicates the number n, of 
nodes of the wavefunction corresponding to the pseudo-angular variable 7. The 
resulting eigenenergies are also labelled by another quantum number ne, which accounts 
for the number of nodes of the wavefunction of the pseudo-radial variable 5. 

The wavefunction factorises in the form 

4:c,"q(5, r l )  = R:S.",(5)S:,,' ,(rl) ( 7 )  
where R is the first-kind radial Mathieu function and S is the angular Mathieu function. 
The parity of the Mathieu functions is indicated by whether the superscript a is an 
even or odd number (Stratton 1941). 

For computing this wavefunction we used the algorithm 352 from the ACM library 
(Clemm 1969). However, numerical difficulties in the determination of the eigenvalues 
of B and arise from the fact that the boundary condition for 5 (i.e. R ( 5 , )  = 01, 
which determines the eigenenergies, is coupled with the boundary condition for 7 (i.e. 
the periodicity condition) which determines the allowed values of b for a given E. 

To satisfy simultaneously both conditions a numerical self-consistent method was 
developed. Assuming that RExb'E'(50)  = 0 we can expand R for E = E, so that 

('$0) == R'/E=E,,AE (8)  RE,b(E) 

and in consequence we can derive A E  for an initial value of E. The second iteration 
starts with E - A E  and repeating the procedure we obtain a quick convergence (i.e. 
IAEI/E - 

Figure 1 shows the eigenenergies obtained for the first states as a function of I ,  - l2 
for a deformation parameter p = 0.6. From this figure we observe that in the classical 
limit the eigenvalues of II - l2  have a minimum value of -2ma2E. Another interesting 
feature arises from the fact that for high energies a lot of degeneracies appear between 
the even-x, even-y (+  +) parity states and the odd-x, odd-y ( - -) parity states. The 
same holds for the (+ -) and the ( -  +) states. 

Figure 2 ( a )  displays the exact energy levels for the elliptic billiard ( 2 a )  for the 
even-x and even-y parity states as a function of p. We have verified that a similar 
behaviour holds for the states with other parities. A very simple interpretation of these 
results can be done in terms of geometrical arguments. Keeping the area constant and 
starting from p = 1 (circular box) when p increases the pseudoradial quanta are 
hardened (the wavelength associated with the motion of 6 decreases) and the 
pseudoangular quanta are softened (the corresponding wavelength increases). Figure 
3 illustrates this fact. Thus we can understand the three types of levels appearing in 
the spectrum. 

finding Eo and b(Eo).  

(i) Levels with n., = 0 and nr # 0 are monotonously increasing. 
(ii) Levels with nE = 0 and n,, # 0 are monotonously decreasing. 
(iii) Mixed levels which initially could decrease but, starting from a given deforma- 

tion, will always increase. For small values of p the softening of the 7 quanta could 
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Figure 1. Energy eigenvalues as a function of I, - l2 corresponding to the eigenfunctions 
of the elliptic billiard which simultaneously diagonalise B and H. The open circles (0) 
correspond to the even solutions with ns = 0 (see text) and the crosses ( x )  to the odd 
solutions with nt = 0. The triangles (A) and asterisks (*) indicate the even and odd solutions, 
respectively, with ne = 1 and the squares (U) and the plus signs (+) correspond to the 
eigenfunctions with ns = 2. Finally, states with nr = 3 are shown with full circles (0). For 
each of these sets of eigenfunctions, characterised by n6 and the parity, the quantum 
number n, increases with energy. 
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Figure 2. Energy spectra for ( a )  the elliptical and ( b )  the rectangular billiard corresponding 
to even-even panty states which are labelled by (n,, nt) and ( n x ,  ny) respectively. 
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Figure 3. Shapes of a rectangular box and an elliptical box as a function of the deformation 
parameter p ( p  = D,/D,  for the rectangle and p = a / b  for the ellipse). The area is 
preserved constant. For the elliptical case, the position of the nodes for the (n, = 4, nE = 2) 
eigenstate are drawn with broken lines. The corresponding nodes for the (n, = 4, n, = 4) 
eigenstate of the rectangle are also shown. 

dominate but starting from a given p (which depends on ne and n,)  the hardening of 
the 6 quanta will finally prevail. 

In this way, the crossings and degeneracies in the spectrum can be easily understood. 
Indeed, the double hyperbola behaviour will never be present because the energies 
increase (respectively, decrease) monotonously for the states (i)  (respectively (ii)) or 
they decrease for small p and then go to infinity for states (iii). 

This qualitative understanding of the spectrum can also be applied to other two- 
dimensional integrable systems where a deformation parameter can be defined, like, 
for instance, the well known rectangular billiard. In this latter case the corresponding 
eigenenergies with respect to the ground state as a function of p = Ox/ Dy (Ox and Dy 
being the sides of the rectangle) follow the rule 

E(nx, n y ,  p )  - (1/p.)[(nx + - 11 + A ( n ,  + - 11 (10) 
where n, and ny are the number of nodes of the wavefunction in the x and y directions. 
The ground state corresponds to n, = ny = 0. This spectrum is displayed in figure 2( b )  
together with those of the elliptic billiard. We can also appreciate the three different 
behaviours associated with the hardening of the ny quanta and the softening of the n, 
quanta when p increases, which is also illustrated in figure 3. The similarity between 
figures 2 ( a )  and 2 ( b )  confirms the previous discussion. 

Finally, it is interesting to relate the crossings of figure 2 with the degeneracies 
which can be present in two-degrees-of-freedom systems with two parameters p,  and 
p2 (Berry and Wilkinson 1984). When these systems remain integrable for all p,  and 
p2,  the preceding arguments can be applied for each value of the parameter p2,  when 
the energies are studied as a function of p,  . Thus the surfaces E ( p , ,  p2) will cross 
in continuum curves leading to diedric intersections. On the other hand, if the system 
turns on a non-integrable problem, accidental degeneracies of the surface E ( p l ,  pz) 
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could appear, leading to diabolic points. Only in such cases would it be necessary to 
perform a detailed analysis, as the one done by Berry and Wilkinson, to confirm the 
phase factor which acquires the wavefunction when the parameters p,  and p2 change 
adiabatically, enclosing the crossing point. 
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